Biophysical models accurately characterize the thermal energetics of a small invasive passerine bird

iScience. 2023 Aug 26;26(10):107743. doi: 10.1016/j.isci.2023.107743. eCollection 2023 Oct 20.

Abstract

Effective management of invasive species requires accurate predictions of their invasion potential in different environments. By considering species' physiological tolerances and requirements, biophysical mechanistic models can potentially deliver accurate predictions of where introduced species are likely to establish. Here, we evaluate biophysical model predictions of energy use by comparing them to experimentally obtained energy expenditure (EE) and thermoneutral zones (TNZs) for the common waxbill Estrilda astrild, a small-bodied avian invader. We show that biophysical models accurately predict TNZ and EE and that they perform better than traditional time-energy budget methods. Sensitivity analyses indicate that body temperature, metabolic rate, and feather characteristics were the most influential traits affecting model accuracy. This evaluation of common waxbill energetics represents a crucial step toward improved parameterization of biophysical models, eventually enabling accurate predictions of invasion risk for small (sub)tropical passerines.

Keywords: Biological sciences; Biophysics; Natural sciences.