Copolymer Brush Particle Hybrid Materials with "Recall-and-Repair" Capability

Chem Mater. 2023 Aug 17;35(17):6990-6997. doi: 10.1021/acs.chemmater.3c01234. eCollection 2023 Sep 12.

Abstract

The effect of sequence structure on the self-healing and shape-memory properties of copolymer-tethered brush particle films was investigated and compared to linear copolymer analogs. Poly(n-butyl acrylate-co-methyl methacrylate), P(BA-co-MMA), and linear and brush analogs with controlled gradient and statistical sequence were synthesized by atom transfer radical polymerization (ATRP). The effect of sequence on self-healing in BA/MMA copolymer brush particle hybrids followed similar trends as for linear analogs. Most rapid restoration of mechanical properties was found for statistical copolymer sequence; an increase of the high Tg (MMA) component provided a path to raise the material's modulus while retaining self-heal ability. Creep testing revealed profound differences between linear and brush systems. While linear copolymers featured substantial viscous deformation when exposed to constant stress in the linear regime, brush analogs displayed minimal permanent deformation and featured shape restoration. The reduction of flow was interpreted to be a consequence of slow cooperative relaxation due to the complex microstructure of brush particle hybrids in which long-range motions are constrained through entanglements and slow-diffusing particle cores. The rubbery-like response imparts BA/MMA copolymer brush material systems concurrent "shape-memory" and "self-heal" capability. This ability to "recall-and-repair" could find application in the design of functional hybrid materials, for example, for soft robotics.