PEC-SERS Dual-Mode Detection of Foodborne Pathogens Based on Binding-Induced DNA Walker and C3N4/MXene-Au NPs Accelerator

Anal Chem. 2023 Sep 26;95(38):14297-14307. doi: 10.1021/acs.analchem.3c02529. Epub 2023 Sep 17.

Abstract

In this paper, a photoelectrochemical (PEC)-surface-enhanced Raman scattering (SERS) dual-mode biosensor is constructed coupled with a dual-recognition binding-induced DNA walker with a carbon nitride nanosheet (C3N4)/MXene-gold nanoparticles (C/M-Au NPs) accelerator, which is reliable and capable for sensitive and accurate detection of Staphylococcus aureus (S. aureus). Initially, a photoactive heterostructure is formed by combining C3N4 and MXene via a simple electrostatic self-assembly as they possess well-matched band-edge energy levels. Subsequently, in situ growth of gold nanoparticles on the formed surface results in better PEC performance and SERS activity, because of the synergistic effects of surface plasmon resonance and Schottky barrier. Furthermore, a three-dimensional, bipedal, and dual-recognition binding-induced DNA walker is introduced with the formation of Pb2+-dependent DNAzyme. In the presence of S. aureus, a significant quantity of intermediate DNA (I-DNA) is generated, which can open the hairpin structure of Methylene Blue-tagged hairpin DNA (H-MB) on the electrode surface, thereby enabling the switch of signals for the quantitative determination of S. aureus. The constructed PEC-SERS dual-mode biosensor that can be mutually verified under one reaction effectively addresses the problem of the low detection accuracy of traditional sensors. Experimental results revealed that the effective combination of PEC and SERS is achieved for amplification detection of S. aureus with a detection range of 5-108 CFU/mL (PEC) and 10-108 CFU/mL (SERS), and a detection of limit of 0.70 CFU/mL (PEC) and 1.35 CFU/mL (SERS), respectively. Therefore, this study offers a novel and effective dual-mode sensing strategy, which has important implications for bioanalysis and health monitoring.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA
  • Gold
  • Humans
  • Metal Nanoparticles*
  • Staphylococcal Infections*
  • Staphylococcus aureus

Substances

  • MXene
  • Gold
  • DNA