Six-minute, in vivo MRI quantification of proximal femur trabecular bone 3D microstructure

Bone. 2023 Dec:177:116900. doi: 10.1016/j.bone.2023.116900. Epub 2023 Sep 13.

Abstract

Background: Assessment of proximal femur trabecular bone microstructure in vivo by magnetic resonance imaging has recently been validated for acquiring information independent of bone mineral density in osteoporotic patients. However, the requisite signal-to-noise ratio (SNR) and resolution for interrogation of the trabecular microstructure at this anatomical location prolongs the scan duration and renders the imaging protocol clinically infeasible. Parallel imaging and compressed sensing (PICS) techniques can reduce the scan duration of the imaging protocol without substantially compromising image quality. The present work investigates the limits of acceleration for a commonly used PICS technique, ℓ1-ESPIRiT, for the purpose of quantifying measures of trabecular bone microarchitecture. Based on a desired error tolerance, a six-minute, prospectively accelerated variant of the imaging protocol was developed and assessed for intersession reproducibility and agreement with the longer reference scan.

Purpose: To investigate the limits of acceleration for MRI-based trabecular bone quantification by parallel imaging and compressed sensing reconstruction, and to develop a prototypical imaging protocol for assessing the proximal femur microstructure in a clinically practical scan time.

Methods: Healthy participants (n = 11) were scanned by a 3D balanced steady-state free precession (bSSFP) sequence satisfying the Nyquist criterion with a scan duration of about 18 min. The raw data were retrospectively undersampled and reconstructed to mimic various acceleration factors ranging from 2 to 6. Trabecular volumes-of-interest in four major femoral regions (greater trochanter, intertrochanteric region, femoral neck, and femoral head) were analyzed and six relevant measures of trabecular bone microarchitecture (bone volume fraction, surface-to-curve ratio, erosion index, elastic modulus, trabecular thickness, plates-to-rods ratio) were obtained for images of all accelerations. To assess agreement, median percent error and intraclass correlation coefficients (ICCs) were computed using the fully-sampled data as reference. Based on this analysis, a prospectively 3-fold accelerated sequence with a duration of about 6 min was developed and the analysis was repeated.

Results: A prospective acceleration factor of 3 demonstrated comparable performance in reproducibility and absolute agreement to the fully-sampled scan. The median CoV over all image-derived metrics was generally <6 % and ICCs >0.70. Also, measurements from prospectively 3-fold accelerated scans demonstrated in general median percent errors of <7 % and ICCs >0.70.

Conclusion: The present work proposes a method to make in vivo quantitative assessment of proximal femur trabecular microstructure with a clinically practical scan duration of about 6 min.

Keywords: MRI; Osteoporosis; Parallel imaging and compressed sensing; Proximal femur; Trabecular bone; Trabecular microstructure.