Naotaifang formula attenuates OGD/R-induced inflammation and ferroptosis by regulating microglial M1/M2 polarization through BMP6/SMADs signaling pathway

Biomed Pharmacother. 2023 Nov:167:115465. doi: 10.1016/j.biopha.2023.115465. Epub 2023 Sep 15.

Abstract

Background: Cerebral ischemia-reperfusion injury (CIRI), a subsequent injury caused by thrombolytic reperfusion post ischemic stroke (IS). Naotaifang (NTF) formula, a novel traditional Chinese medicine (TCM) remedy against IS, was shown to exert beneficial effects in inhibiting inflammation and inhibiting lipid peroxide synthesis in our previous research.

Purpose: This study aimed to further explore the role of NTF in attenuating oxygen-glucose deprivation//reoxygenation (OGD/R)-induced inflammation and ferroptosis by regulating microglial M1/M2 polarization through the bone morphogenetic protein 6(BMP6)/SMADs signaling pathway.

Methods: BV2 microglia were used to establish an OGD/R model. The effects of NTF on inflammation and ferroptosis in OGD/R-injured BV2 cells were separately detected by immunofluorescence assay, fluorescent probe, DCFH-DA flow cytometry, enzyme-linked immunosorbent assay, and western-blot.

Results: The present results revealed that the M1 phenotype of microglia promoted the secretion of pro-inflammatory cytokines and aggravated ferroptosis and brain damage following OGD/R. However, an inhibitor of BMP6, LND-193189, reversed the aforementioned effects. Similarly, NTF promoted the shift of microglia from M1 to M2. Besides, NTF treatment effectively inhibited the expression of hepcidin, BMP6, SMADs and promoted the expression of ferroportin (FPN, SLC40A1) and γ-L-glutamyl-L-cysteinylglycine (glutathione or GSH) peroxidase 4 (GPX4).

Conclusion: Microglial M1/M2 polarization plays a pivotal role in inflammation and ferroptosis during OGD/R. The BMP6/SMADs signaling pathway is a potential therapeutical target of inflammation and ferroptosis induced by the transformation of microglia. Moreover, NTF could alleviate inflammation and ferroptosis through the BMP6/SMADs signaling pathway in OGD/R-injured microglia.

Keywords: BMP6/SMADs; Ferroptosis; Microglia; Naotaifang; Neuroinflammation; OGD/R.