Exceptionally Stable And Super-Efficient Electrocatalysts Derived From Semiconducting Metal Phosphonate Frameworks

Chemistry. 2024 Jan 2;30(1):e202302765. doi: 10.1002/chem.202302765. Epub 2023 Nov 8.

Abstract

Two new isostructural semiconducting metal-phosphonate frameworks are reported. Co2 [1,4-NDPA] and Zn2 [1,4-NDPA] (1,4-NDPA4- is 1,4-naphthalenediphosphonate) have optical bandgaps of 1.7 eV and 2.5 eV, respectively. The electrocatalyst derived from Co2 [1,4-NPDA] as a precatalyst generated a low overpotential of 374 mV in the oxygen evolution reaction (OER) with a Tafel slope of 43 mV dec-1 at a current density of 10 mA cm-2 in alkaline electrolyte (1 mol L-1 KOH), which is indicative of remarkably superior reaction kinetics. Benchmarking of the OER of Co2 [1,4-NPDA] material as a precatalyst coupled with nickel foam (NF) showed exceptional long-term stability at a current density of 50 mA cm-2 for water splitting compared to the state-of-the-art Pt/C/RuO2 @NF after 30 h in 1 mol L-1 KOH. In order to further understand the OER mechanism, the transformation of Co2 [1,4-NPDA] into its electrocatalytically active species was investigated.

Keywords: electrocatalysis; phosphonates; semiconducting materials.