SARS-CoV-2 sublingual vaccine with RBD antigen and poly(I:C) adjuvant: Preclinical study in cynomolgus macaques

Biol Methods Protoc. 2023 Sep 13;8(1):bpad017. doi: 10.1093/biomethods/bpad017. eCollection 2023.

Abstract

Mucosal vaccine for sublingual route was prepared with recombinant SARS-CoV-2 spike protein receptor binding domain (RBD) antigen and poly(I:C) adjuvant components. The efficacy of this sublingual vaccine was examined using Cynomolgus macaques. Nine of the macaque monkeys were divided into three groups of three animals: control [just 400 µg poly(I:C) per head], low dose [30 µg RBD and 400 µg poly(I:C) per head], and high dose [150 µg RBD and 400 µg poly(I:C) per head], respectively. N-acetylcysteine (NAC), a mild reducing agent losing mucin barrier, was used to enhance vaccine delivery to mucosal immune cells. RBD-specific IgA antibody secreted in pituita was detected in two of three monkeys of the high dose group and one of three animals of the low dose group. RBD-specific IgG and/or IgA antibodies in plasma were also detected in these monkeys. These indicated that the sublingual vaccine stimulated mucosal immune response to produce antigen-specific secretory IgA antibodies in pituita and/or saliva. This sublingual vaccine also affected systemic immune response to produce IgG (IgA) in plasma. Little RBD-specific IgE was detected in plasma, suggesting no allergic antigenicity of this sublingual vaccine. Thus, SARS-CoV-2 sublingual vaccine consisting of poly(I:C) adjuvant showed reasonable efficacy in a non-human primate model.

Keywords: COVID-19; N-acetylcysteine (NAC); mucin layer; mucosal immunity; oral route; safety.