Electrically tunable optical spatial differentiation with graphene

Opt Express. 2023 Aug 14;31(17):27312-27323. doi: 10.1364/OE.498629.

Abstract

In recent years, optical analog computing has experienced rapid development, among which optical differential operation has attracted great attention. Here, based on the unique optical properties of graphene, we propose an electrically tunable optical spatial differentiation by introducing a graphene layer at a quartz substrate. It is found that the output light field is sensitive to the graphene layer near the Brewster angle for small polarization output at the graphene-quartz substrate interface and can be modulated by changing the Fermi energy of graphene. In this case, the result of the optical differential operation can be dynamically regulated. Almost strict one-dimensional differential operations in different directions and almost perfect two-dimensional differential operations can be achieved. In addition, two-dimensional edge detection with different degrees of distortion in different directions can also be realized when applied to image processing. This new modulation method may provide more possibilities for tunable image edge detection and provide a potential way for developing more versatile optical simulators in the future.