Enhanced wide-range gas pressure sensing with an all-solid open Fabry-Pérot interferometer

Opt Express. 2023 Aug 28;31(18):29994-30004. doi: 10.1364/OE.500063.

Abstract

The sensors with a wide gas pressure detection range are urgently demanded in many industrial applications. Here, we propose a gas pressure sensor based on an all-solid open Fabry-Pérot interferometer, which is prepared by using optical contact bonding to ensure high structural strength and high-quality factor of 8.8 × 105. The applied pressure induces a change in the refractive index of the air, leading to the shift of the resonant spectrum. The pressure is detected by calibrating this shift. The sensor exhibits a pressure sensitivity of 4.20 ± 0.01 nm/MPa in a pressure range of 0 to 10 MPa and has a minimum pressure resolution of 0.005 MPa. Additionally, it shows a lower temperature cross-sensitivity of -0.25 kPa/°C. These findings affirm that the sensor achieves high-sensitivity pressure sensing across a wide detection range. Moreover, owing to its exceptional mechanical strength, it holds great promise for applications in harsh environments, such as high temperature and high pressure.