Stimulated-responsive refractive-diffractive biological hydrogel micro-optical element enabling achromatism via femtosecond laser lithography

Opt Express. 2023 Aug 28;31(18):29368-29379. doi: 10.1364/OE.500484.

Abstract

Herein, we report a novel biological hydrogel-based achromatic refractive-diffractive micro-optical element with single-material apochromatism. Benefiting from the stimulated responsive property of the hydrogel, pH modulation yielded swelling and affected the refractive index of the element, enabling multi-wavelength focusing performance tuning and chromatic aberration adjustment. Using femtosecond laser lithography, we fabricated a separate hydrogel microlens and Fresnel zone plate and measured the tunable focusing performance while varying pH; the results were consistent with our simulation results. Furthermore, we designed and fabricated a hydrogel-based achromatic refractive-diffractive micro-optical element and demonstrated achromatism with respect to three wavelengths using only one material consisting of a microlens and a Fresnel zone plate. We characterized the optical focusing properties and observed smaller chromatic aberration. The potential applications of such hybrid microoptical elements include biomedical imaging and optical biology sensing.