Bioinspired fabrication of zinc hydroxide-based nanostructure from lignocellulosic biomass Litchi chinensis leaves and its efficacy evaluation on antibacterial, antioxidant, and anticancer activity

Int J Biol Macromol. 2023 Dec 31;253(Pt 4):126886. doi: 10.1016/j.ijbiomac.2023.126886. Epub 2023 Sep 12.

Abstract

Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 μg/ml, with an IC50 value of 45.22 μg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 μg/ml with an IC50 of 2.58 μg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.

Keywords: Antibacterial; Anticancer; Antioxidant; Green synthesis; Zn-hydroxide nanostructure.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Antioxidants / chemistry
  • Antioxidants / pharmacology
  • Biomass
  • HEK293 Cells
  • Humans
  • Hydroxides
  • Litchi* / chemistry
  • Metal Nanoparticles* / chemistry
  • Nanostructures*
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology

Substances

  • Antioxidants
  • lignocellulose
  • zinc hydroxide
  • Anti-Bacterial Agents
  • Hydroxides
  • Plant Extracts