Self-healing, ultra-stretchable, and highly sensitive conductive hydrogel reinforced by sulfate polysaccharide from Enteromorpha prolifera for human motion sensing

Int J Biol Macromol. 2023 Dec 31;253(Pt 4):126847. doi: 10.1016/j.ijbiomac.2023.126847. Epub 2023 Sep 12.

Abstract

The synthesis of multifunctional conductive hydrogel has attracted extensive attention worldwide due to their integrated properties of stretchability, self-adhesion, self-healing, and high sensitivity, while it is still a challenge. Although various kinds of polysaccharides and their derivatives are used to achieve the aforementioned objective, there are few researches about hydrogel design introducing sulfated polysaccharide from Enteromorpha prolifera (SPE), which is rich in hydroxyl, sulfate, and carboxyl groups providing amounts of reaction sites for hydrogel synthesis. Herein, conductive hydrogel (PAA-Al3+-SPE3) reinforced by SPE was designed by simple one pot hot polymerization method. This hydrogel demonstrated charming extension ratio (up to 4027.40 %), strain stress (up to 59.94 kPa), compressive strength (19.71 Mpa), and high conductivity sensibility (GF 6.76, 300 % - 700 %). Additionally, PAA-Al3+-SPE3 showed good self-healing property (repaired autonomously after 60 s) and satisfied self-adhesion (31.11 kPa) due to the reversible hydrogen bonds and metal coordination interactions. Furthermore, the PAA-Al3+-SPE3 hydrogel showed great real-time sensing performance to monitor various motions. These findings suggest the potential of PAA-Al3+-SPE3 hydrogel as an affordable and reliable conductive sensing material. Meantime, the first utilization of SPE to construct flexible wearable sensors offers new route for the high-value application of Enteromorpha prolifera.

Keywords: Conductive hydrogel; Mechanical property; Self-recovery; Strain sensor; Sulfated polysaccharide from Enteromorpha prolifera.

MeSH terms

  • Electric Conductivity
  • Humans
  • Hydrogels*
  • Motion
  • Polysaccharides
  • Prunella*
  • Sulfates

Substances

  • Hydrogels
  • Sulfates
  • Polysaccharides