Stability and cytotoxicity of biopolymer-coated liposomes for use in the oral cavity

Int J Pharm. 2023 Oct 15:645:123407. doi: 10.1016/j.ijpharm.2023.123407. Epub 2023 Sep 12.

Abstract

This study investigates the stability and cytotoxicity of biopolymer-coated liposomes for use in the oral cavity. Liposomes (3 mM and 6 mM) were prepared by the thin film method and hydrated with phosphate buffer (PB) or glycerol phosphate buffer (G-PB). For coating, liposomes were added to a biopolymer solution of opposite charge. Particle stability was evaluated by measuring the size, polydispersity index, and zeta potential for up to 60 weeks. In vitro interaction of fluorescent-labelled biopolymer-coated liposomes and dysplastic oral keratinocytes was analyzed by confocal microscopy. Potential cytotoxicity was assessed in dysplastic oral keratinocytes by cell proliferation and cell viability. All three biopolymers showed good coating abilities for both concentrations and hydration media. The alginate coated liposomes in PB, 3 mM chitosan-coated liposomes in PB, and chitosan-coated liposomes in G-PB were stable for up to 60 weeks. In vitro studies demonstrated low cytotoxicity for all coated liposomes and non-specific cellular uptake of biopolymer-coated liposomes, independent of biopolymer, surface charge, lipid concentration and hydration media. All three formulations demonstrated low cytotoxicity and were considered safe. Alginate- and chitosan-coated liposomes demonstrated good stability over time and may be promising agents for use in the oral cavity and should be investigated further.

Keywords: Biopolymers; Cell viability; Cytotoxicity; Dry mouth; Liposome; Xerostomia.