Genomic Mysteries of Giant Bacteria: Insights and Implications

Genome Biol Evol. 2023 Sep 4;15(9):evad163. doi: 10.1093/gbe/evad163.

Abstract

Bacteria and Archaea are traditionally regarded as organisms with a simple morphology constrained to a size of 2-3 µm. Nevertheless, the history of microbial research is rich in the description of giant bacteria exceeding tens and even hundreds of micrometers in length or diameter already from its early days, for example, Beggiatoa spp., to the present, for example, Candidatus Thiomargarita magnifica. While some of these giants are still being studied, some were lost to science, with merely drawings and photomicrographs as evidence for their existence. The physiology and biogeochemical role of giant bacteria have been studied, with a large focus on those involved in the sulfur cycle. With the onset of the genomic era, no special emphasis has been given to this group, in an attempt to gain a novel, evolutionary, and molecular understanding of the phenomenon of bacterial gigantism. The few existing genomic studies reveal a mysterious world of hyperpolyploid bacteria with hundreds to hundreds of thousands of chromosomes that are, in some cases, identical and in others, extremely different. These studies on giant bacteria reveal novel organelles, cellular compartmentalization, and novel mechanisms to combat the accumulation of deleterious mutations in polyploid bacteria. In this perspective paper, we provide a brief overview of what is known about the genomics of giant bacteria and build on that to highlight a few burning questions that await to be addressed.

Keywords: bacterial heterozygosity; genomics; giant bacteria; polyploidy; size limitations.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Archaea / genetics
  • Bacteria / genetics
  • Biological Evolution
  • Genomics*
  • Pentaerythritol Tetranitrate*

Substances

  • Pentaerythritol Tetranitrate