DMD-based compact SIM system with hexagonal-lattice-structured illumination

Appl Opt. 2023 Jul 10;62(20):5409-5415. doi: 10.1364/AO.494214.

Abstract

In this study, we developed a novel, compact, and efficient structured illumination microscopy (SIM) system, to our best knowledge. A binary hexagonal lattice pattern was designed and implemented on a digital micromirror device (DMD), resulting in a projection-based structured-light generation. By leveraging the combination of the high-speed switching capability of the DMD with a high-speed CMOS camera, the system can capture 1024×1024 pixels images at a 200 fps frame rate when provided with sufficient illumination power. The loading of the hexagonal lattice pattern reduces the number of images required for reconstruction to seven, and by utilizing the DMD modulating characteristics on the illumination path, there is no need to use bulky mechanical structures for phase shifting. We designed a compact system with 110m m×150m m×170m m dimensions that displayed a 1.61 resolution enhancement for fluorescent particle and biological sample imaging.