Functionally Tailored Metal-Organic Framework Coatings for Mediating Ti Implant Osseointegration

Adv Sci (Weinh). 2023 Oct;10(29):e2303958. doi: 10.1002/advs.202303958. Epub 2023 Sep 13.

Abstract

Owing to their mechanical resilience and non-toxicity, titanium implants are widely applied as the major treatment modality for the clinical intervention against bone fractures. However, the intrinsic bioinertness of Ti and its alloys often impedes the effective osseointegration of the implants, leading to severe adverse complications including implant loosening, detachment, and secondary bone damage. Consequently, new Ti implant engineering strategies are urgently needed to improve their osseointegration after implantation. Remarkably, metalorganic frameworks (MOFs) are a class of novel synthetic material consisting of coordinated metal species and organic ligands, which have demonstrated a plethora of favorable properties for modulating the interfacial properties of Ti implants. This review comprehensively summarizes the recent progress in the development of MOF-coated Ti implants and highlights their potential utility for modulating the bio-implant interface to improve implant osseointegration, of which the discussions are outlined according to their physical traits, chemical composition, and drug delivery capacity. A perspective is also provided in this review regarding the current limitations and future opportunities of MOF-coated Ti implants for orthopedic applications. The insights in this review may facilitate the rational design of more advanced Ti implants with enhanced therapeutic performance and safety.

Keywords: bone-implant interface; metal-organic frameworks; osseointegration; titanium implants.

Publication types

  • Review

MeSH terms

  • Bone and Bones
  • Metal-Organic Frameworks*
  • Osseointegration*
  • Prostheses and Implants
  • Titanium / chemistry

Substances

  • Metal-Organic Frameworks
  • Titanium