Association of co-exposure to metal(loid)s during pregnancy with birth outcomes in the Tibetan plateau

Chemosphere. 2023 Nov:342:140144. doi: 10.1016/j.chemosphere.2023.140144. Epub 2023 Sep 11.

Abstract

Maternal metal (loid)s exposure has been related to birth outcomes but the results are still inconclusive. Most previous studies have discussed the single metal (loid)s, neglecting the scene of co-exposure. We examined the associations of both single metal (loid)s and metal mixtures with birth outcomes in a birth cohort from the Tibetan Plateau, including body weight, body length, head circumference, small for gestational age (SGA), and Ponderal index (PI). In our analysis of 1069 women, we measured 29 metal (loid)s in urine samples in the third trimester. The associations of single metal (loid)s with categorical or continuous birth outcomes were evaluated using a generalized linear mixed-effects model or linear mixed-effects model, respectively. The least absolute shrinkage and selection operator, Bayesian kernel machine, and Quantile g-computation regression were used to explore the joint association. We also evaluated the interactive effects of ethnicity and altitude on the effect of metal (loid)s on birth outcomes. Copper (Cu) concentration in maternal urine was positively associated with SGA, birth weight, birth length, and head circumference in the single pollutant models. For instance, Cu was associated with an increased risk of SGA [OR (95% CI) = 1.56 (1.23, 1.97); P < 0.001]. We didn't find significant joint association of metal mixtures with birth outcomes except a positive association between the mixture of Cu, Magnesium (Mg), and Iron (Fe) with the risk of SGA when the exposure level was above its 80th percentile, and Cu dominated the adverse association in a non-linear manner. Living altitude modified the associations of Cu with SGA and the positive association was only found in participants living at high altitude. In conclusion, maternal urinary metal (loid)s, especially Cu, was the dominant harmful metal (loid)s when associated with SGA on the Tibetan Plateau.

Keywords: Birth outcomes; Growth restriction; Small for gestational age; Tibetan plateau; metal(loid)s.

MeSH terms

  • Bayes Theorem
  • Birth Weight
  • Female
  • Fetal Growth Retardation
  • Humans
  • Infant, Newborn
  • Infant, Small for Gestational Age*
  • Metals*
  • Pregnancy
  • Tibet

Substances

  • Metals