Wittig/B─H insertion reaction: A unique access to trisubstituted Z-alkenes

Sci Adv. 2023 Sep 15;9(37):eadj2486. doi: 10.1126/sciadv.adj2486. Epub 2023 Sep 13.

Abstract

The Wittig reaction, which is one of the most effective methods for synthesizing alkenes from carbonyl compounds, generally gives thermodynamically stable E-alkenes, and synthesis of trisubstituted Z-alkenes from ketones presents notable challenges. Here, we report what we refer to as Wittig/B─H insertion reactions, which innovatively combine a Wittig reaction with carbene insertion into a B─H bond and constitute a promising method for the synthesis of thermodynamically unstable trisubstituted Z-boryl alkenes. Combined with the easy transformations of boryl group, this methodology provides efficient access to a variety of previously unavailable trisubstituted Z-alkenes and thus provides a platform for discovery of pharmaceuticals. The unique Z-selectivity of the reaction is determined by the maximum overlap of the orbitals between the B─H bond of the borane adduct and the alkylidene carbene intermediate in the transition state.