Copper catalyzed Shono-type oxidation of proline residues in peptide

Sci Adv. 2023 Sep 15;9(37):eadj3090. doi: 10.1126/sciadv.adj3090. Epub 2023 Sep 13.

Abstract

Since the initial report in 1975, the Shono oxidation has become a powerful tool to functionalize the α position of amines, including proline derivatives, by electrochemical oxidation. However, the application of electrochemical Shono oxidations is restricted to the preparation of simple building blocks and homogeneous Shono-type oxidation of proline derivatives remains challenging. The late-stage functionalization at proline residues embedded within peptides is highly important as substitutions about the proline ring are known to affect biological and pharmacological activities. Here, we show that homogenous copper-catalyzed oxidation conditions complement the Shono oxidation and this general protocol can be applied to a series of formal C-C coupling reactions with a variety of nucleophiles using a one-pot procedure. This protocol shows good tolerance toward 19 proteinogenic amino acids and was used to functionalize several representative bioactive peptides, including captopril, enalapril, Smac, and endomorphin-2. Last, peptide cyclization can also be achieved by using an appropriately positioned side-chain hydroxyl moiety.

MeSH terms

  • Amines
  • Amino Acids
  • Catalysis
  • Copper*
  • Peptides
  • Proline*

Substances

  • Proline
  • Copper
  • Peptides
  • Amino Acids
  • Amines