Heuristic Approach to Predict the Performance Degradation of a Solid Oxide Fuel Cell Cathode

ACS Appl Mater Interfaces. 2023 Sep 27;15(38):45354-45366. doi: 10.1021/acsami.3c05156. Epub 2023 Sep 13.

Abstract

The present work aims to predict the degradation in the performance of a solid oxide fuel cell (SOFC) cathode owing to cation interdiffusion between the electrolyte and cathode and surface segregation. Cation migration in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-x (LSCF)-Gd0.10Ce0.90O1.95 (GDC) composite cathode is evaluated in relation to time up to 1000 h using scanning transmission electron microscopy (STEM)-energy-dispersive X-ray spectroscopy (EDXS). The resulting insulating phase formed within the GDC interlayer is quantified by means of the volume fraction using a two-dimensional (2D) image analysis technique. For the very first time, the amount of the insulating phase in the GDC interlayer is quantified, and the corresponding performance degradation of the LSCF cathode is predicted. Mathematical relationships are established for the estimation of degradation due to surface segregation of the cathode. The ohmic resistance between the cathode and the GDC interlayer/electrolyte interface and the polarization resistance of the cathode, characterized by electrochemical impedance spectroscopy (EIS), show an excellent match with the predicted results. The combined degradation analysis and modeling for the cathode lifetime prediction provide a systematic understanding of the time-dependent cation migration and segregation behavior.

Keywords: cathode degradation; cation interdiffusion; lifetime prediction; segregation; solid oxide fuel cell.