New insights into the effects of UV light on individual Nosema bombycis spores, as determined using single-cell optical approaches

Photochem Photobiol. 2023 Sep 12. doi: 10.1111/php.13858. Online ahead of print.

Abstract

Nosema bombycis (Nb) is a pathogen causing pebrine in sericulture. Ultraviolet (UV) light exposure is a common physical disinfection method, but the mechanisms underlying UV-based disinfection have only been studied at the population level. In this study, changes in and germination of UV-irradiated spores were observed using Raman tweezers and phase-contrast imaging to evaluate the effects of UV radiation on Nb spores at the single-cell level. We found that irradiation caused the complete leakage of trehalose from individual spores. We also found that more spores leaked as the UV dose increased. There was no significant loss of intracellular biomacromolecules and no marked changes in the peaks associated with protein secondary structures. Low-dose radiation promoted spore germination and high-dose radiation decreased the germination rate, while the germination time did not undergo significant alterations. These results suggest that UV radiation disrupts the permeability of the inner membrane and alters the spore wall, thereby affecting the ability of the spore to sense and respond to extracellular stimuli, which further triggers germination and reduces or stops spore germination. This study provides new insights into the molecular mechanisms underlying conventional disinfection measures on microsporidian spores.

Keywords: Microsporidium; Raman Spectroscopy; phase-contrast imaging; single-cell analysis; spore; ultraviolet.