Temporal and spatial distributions, source identification, and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 from 2016 to 2021 in Shenzhen, China

Environ Sci Pollut Res Int. 2023 Oct;30(47):103788-103800. doi: 10.1007/s11356-023-29686-0. Epub 2023 Sep 11.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in the atmosphere that have drawn intense attention due to their carcinogenicity and mutagenicity. In this work, 1424 air samples were collected between January 2016 and December 2021 in three areas of Shenzhen, China to determine the concentrations of PM2.5 and PAHs and their spatiotemporal variation. Human health risks due to the daily intake and uptake of PAHs and the resulting incremental lifetime cancer risk (ILCR) were also evaluated. PAHs were detected frequently in the samples at concentrations between 0.28 and 32.7 ng/m3 (median: 1.04 ng/m3). PM2.5 and PAH concentrations decreased from 2016 to 2021, and the Yantian area had lower median concentrations of PM2.5 (23.0 μg/m3) and PAHs (0.02 ng/m3) than the Longgang and Nanshan areas. The concentrations of PM2.5 and PAHs were significantly higher in winter than in summer. Analysis of diagnostic ratios indicated that petroleum combustion was the dominant source of airborne PAHs in Shenzhen. The estimated daily intake (EDI) and uptake (EDU) of PAHs by local residents decreased gradually with increasing age, indicating that infants are at particular risk of PAH exposure. However, the incremental lifetime cancer risks (ILCRs) were below the threshold value of 10-6, indicating that inhalation exposure to PAHs posed a negligible carcinogenic risk to Shenzhen residents. While promising, these results may underestimate actual PAH exposure levels, so further analysis of health risks due to PAHs in Shenzhen is needed.

Keywords: Health risk assessment; PM2.5; Polycyclic aromatic hydrocarbons; Source identification; Temporal and spatial distribution.

MeSH terms

  • Air Pollutants* / analysis
  • China
  • Environmental Monitoring
  • Humans
  • Neoplasms* / chemically induced
  • Neoplasms* / epidemiology
  • Particulate Matter / analysis
  • Polycyclic Aromatic Hydrocarbons* / analysis
  • Risk Assessment
  • Seasons

Substances

  • Air Pollutants
  • Particulate Matter
  • Polycyclic Aromatic Hydrocarbons