Widespread 8-oxoguanine modifications of miRNA seeds differentially regulate redox-dependent cancer development

Nat Cell Biol. 2023 Sep;25(9):1369-1383. doi: 10.1038/s41556-023-01209-6. Epub 2023 Sep 7.

Abstract

Oxidative stress contributes to tumourigenesis by altering gene expression. One accompanying modification, 8-oxoguanine (o8G) can change RNA-RNA interactions via o8G•A base pairing, but its regulatory roles remain elusive. Here, on the basis of o8G-induced guanine-to-thymine (o8G > T) variations featured in sequencing, we discovered widespread position-specific o8Gs in tumour microRNAs, preferentially oxidized towards 5' end seed regions (positions 2-8) with clustered sequence patterns and clinically associated with patients in lower-grade gliomas and liver hepatocellular carcinoma. We validated that o8G at position 4 of miR-124 (4o8G-miR-124) and 4o8G-let-7 suppress lower-grade gliomas, whereas 3o8G-miR-122 and 4o8G-let-7 promote malignancy of liver hepatocellular carcinoma by redirecting the target transcriptome to oncogenic regulatory pathways. Stepwise oxidation from tumour-promoting 3o8G-miR-122 to tumour-suppressing 2,3o8G-miR-122 occurs and its specific modulation in mouse liver effectively attenuates diethylnitrosamine-induced hepatocarcinogenesis. These findings provide resources and insights into epitranscriptional o8G regulation of microRNA functions, reprogrammed by redox changes, implicating its control for cancer treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinogenesis / genetics
  • Carcinoma, Hepatocellular* / chemically induced
  • Carcinoma, Hepatocellular* / genetics
  • Glioma*
  • Guanine
  • Liver Neoplasms* / chemically induced
  • Liver Neoplasms* / genetics
  • Mice
  • MicroRNAs* / genetics
  • Oxidation-Reduction

Substances

  • 8-hydroxyguanine
  • MicroRNAs
  • Guanine