Novel modeling approach integrating population pharmacokinetics and interspecies scaling to predict human pharmacokinetics of the new anti-tuberculosis agent telacebec (Q203)

Biomed Pharmacother. 2023 Nov:167:115441. doi: 10.1016/j.biopha.2023.115441. Epub 2023 Sep 9.

Abstract

Telacebec is a new anti-tuberculosis agent with promising therapeutic activity and a favorable safety profile. This study aimed to characterize the pharmacokinetics of telacebec via interspecies scaling and population pharmacokinetic modeling for the prediction of human pharmacokinetics. Preclinical pharmacokinetic data were obtained from mice, rats, and dogs following intravenous and oral doses of telacebec. A population pharmacokinetic model was developed to describe the pharmacokinetic data from all three species. The disposition parameters were well correlated with the body weight for all species using an allometric equation. Thus, the allometric scaling was incorporated into the population pharmacokinetic model, which could simultaneously describe the plasma concentration vs. time data from all preclinical studies as well as the Phase 1A clinical study. The developed model was used to predict the pharmacokinetics of telacebec after IV injection, including the clearance (CL) of 168.58 [118.86 - 238.73] mL/min and volume of distribution (Vss) of 968.84 [396.87 - 2831.31] L for 80-kg human. The absolute bioavailability of telacebec in humans in the fed state was estimated as 70.34 ± 9.91%. Finally, the population pharmacokinetic model with allometric scaling was utilized to simulate the plasma concentration vs. time profiles of telacebec after multiple oral doses in humans. The model-predicted profiles well agreed with the observed data in Phase 1B clinical trial. The present pharmacokinetic model may help better understand the activity of telacebec, leading to the design of optimal dosing regimens and new formulation development.

Keywords: Interspecies scaling; Pharmacokinetics; Population pharmacokinetic model; Telacebec; Tuberculosis.