PEPNet: A barotropic primitive equations-based network for wind speed prediction

Neural Netw. 2023 Oct:167:533-550. doi: 10.1016/j.neunet.2023.08.042. Epub 2023 Aug 26.

Abstract

In wind speed prediction technologies, deep learning-based methods have achieved promising advantages. However, most existing methods focus on learning implicit knowledge in a data-driven manner but neglect some explicit knowledge from the physical theory of meteorological dynamics, failing to make stable and long-term predictions. In this paper, we explore introducing explicit physical knowledge into neural networks and propose Physical Equations Predictive Network (PEPNet) for multi-step wind speed predictions. In PEPNet, a new neural block called the Augmented Neural Barotropic Equations (ANBE) block is designed as its key component, which aims to capture the wind dynamics by combining barotropic primitive equations and deep neural networks. Specifically, the ANBE block adopts a two-branch structure to model wind dynamics, where one branch is physic-based and the other is data-driven-based. The physic-based branch constructs temporal partial derivatives of meteorological elements (including u-component wind, v-component wind, and geopotential height) in a new Neural Barotropic Equations Unit (NBEU). The NBEU is developed based on the barotropic primitive equations mode in numerical weather prediction (NWP). Besides, considering that the barotropic primitive mode is a crude assumption of atmospheric motion, another data-driven-based branch is developed in the ANBE block, which aims at capturing meteorological dynamics beyond barotropic primitive equations. Finally, the PEPNet follows a time-variant structure to enhance the model's capability to capture wind dynamics over time. To evaluate the predictive performance of PEPNet, we have conducted several experiments on two real-world datasets. Experimental results show that the proposed method outperforms the state-of-the-art techniques and achieve optimal performance.

Keywords: Neural networks; The barotropic primitive equation mode; Wind speed prediction.

MeSH terms

  • Motion
  • Neural Networks, Computer*
  • Wind*