Constructing Nitrogen-Doped Carbon Hierarchy Structure Derived from Metal-Organic Framework as High-Performance ORR Cathode Material for Zn-Air Battery

Small. 2024 Jan;20(3):e2304594. doi: 10.1002/smll.202304594. Epub 2023 Sep 10.

Abstract

The development of efficient and low-cost catalysts for cathodic oxygen reduction reaction (ORR) in Zn-air battery (ZAB) is a key factor in reducing costs and achieving industrialization. Here, a novel segregated CoNiPt alloy embedded in N-doped porous carbon with a nanoflowers (NFs)-like hierarchy structure is synthesized through pyrolyzing Hofmann-type metal-organic frameworks (MOFs). The unique hierarchical NFs structure exposes more active sites and facilitates the transportation of reaction intermediates, thus accelerating the reaction kinetics. Impressively, the resulting 15% CoNiPt@C NFs catalyst exhibits outstanding alkaline ORR activity with a half-wave potential of 0.93 V, and its mass activity is 7.5 times higher than that of commercial Pt/C catalyst, surpassing state-of-the-art noble metal-based catalysts. Furthermore, the assembled CoNiPt@C+RuO2 ZAB demonstrates a maximum power density of 172 mW cm-2 , which is superior to that of commercial Pt/C+RuO2 ZAB. Experimental results reveal that the intrinsic ORR mass activity is attributed to the synergistic interaction between oxygen defects and pyrrolic/graphitic N species, which optimizes the adsorption energy of the intermediate species in the ORR process and greatly enhances catalytic activity. This work provides a practical and feasible strategy for synthesizing cost-effective alkaline ORR catalysts by optimizing the electronic structure of MOF-derived catalysts.

Keywords: CoNiPt alloy; Zn-air batteries; metal-organic frameworks; nanoflowers; oxygen reduction reaction.