Simultaneous modulation of CHO cell cytotoxicity, turbidity, and DOC by coagulation with or without pre-oxidation in water from the Pearl River Delta region, China

Sci Total Environ. 2023 Dec 10:903:166840. doi: 10.1016/j.scitotenv.2023.166840. Epub 2023 Sep 9.

Abstract

Coagulation with or without pre-oxidation are important drinking water treatment processes. However, the efficacy of these processes in mitigating water toxicity remains unknown. To further improve drinking water safety, we employed water from the Pearl River Delta region of southern China to investigate a treatment approach consisting of coagulation with or without pre-oxidation to simultaneously modulate health-relevant cytotoxicity to CHO cells, on top of the conventional foci of turbidity and dissolved organic carbon (DOC) during water treatment. Three coagulants (two aluminum-based and one iron-based salts) and three pre-oxidants (ozone, permanganate, and peroxymonosulfate) were studied. For coagulation without pre-oxidation, intermediate coagulant doses and pH reached optimum cytotoxicity to CHO cells, turbidity, and DOC control simultaneously. Introducing oxidants reduced cytotoxicity to CHO cells significantly, enhanced by increasing oxidant concentrations and pre-oxidation duration. The cytotoxicity to CHO cells mitigation capabilities of three pre-oxidants were: ozone > peroxymonosulfate > potassium permanganate. Modulation of water cytotoxicity to CHO cells was mostly attributable to controlling DOC (specifically humic-acid like substances, tyrosine, tryptophan). However, the addition of pre-oxidants led to significant shifts in water cytotoxicity to CHO cells forcing drivers, rendering humic-acid like substances the sole decisive cytotoxicity-inducing fluorophores. For the first time, 'sweet spots' were identified to simultaneously monitor cytotoxicity to CHO cells alongside turbidity and DOC. These methods better modulate water cytotoxicity to CHO cells without sacrificing conventional water treatment goals while shedding light onto the mechanisms behind.

Keywords: CHO cell cytotoxicity; Coagulation; Control; Dissolved organic carbon; Pre-oxidation; Turbidity.