Comparative characterization of flavor precursors and volatiles of Taihe black-boned silky fowl and Hy-line Brown yolks using multiomics and GC-O-MS-based volatilomics

Food Res Int. 2023 Oct:172:113168. doi: 10.1016/j.foodres.2023.113168. Epub 2023 Jun 18.

Abstract

Eggs are nutritious and highly valued by consumers. However, egg flavor varies greatly among different hen breeds. The present study used gas chromatography-olfactometry-mass spectrometry-based volatilomics to identify and compare volatile compounds in Taihe black-boned silky fowl (TS) and Hy-line Brown (HL) egg yolks. In addition, the relationships between the levels of different metabolites and lipids and flavor-associated differences were investigated using multiomics. Twenty-eight odorants in total were identified; among them, the levels of 3-methyl-butanal, 1-octen-3-ol, 2-pentylfuran, and (E, E)-2,4-decadienal differed significantly (P < 0.05) between TS and HL egg yolks. The difference in flavor compounds results in TS egg yolks having a stronger overall odor and flavor and a higher acceptance level than HL egg yolks. Metabolomic analysis revealed that 112 metabolites in the egg yolks were significantly different between the two breeds. Furthermore, these different metabolites in the egg yolks of both breeds were significantly enriched in phenylalanine, tyrosine, and tryptophan biosynthesis pathways and phenylalanine metabolism, alanine, aspartate, and glutamate metabolism pathways (P < 0.05), as identified by both metabolite set enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Lipidomic analysis revealed significant differences in the lipid subclasses, lipid molecules, and fatty acid profiles between the egg yolks from the two breeds. As a result, 48 lipid molecules had variable influence in projection values > 1 based on the partial least squares regression model, which may play a role in the differences in aroma characteristics between the two breeds through oxidative degradation of fatty acids. Our study revealed the metabolite, lipid, and volatility profiles of TS and HL egg yolks and may provide an important basis for improving egg flavor to satisfy various consumer preferences.

Keywords: Egg yolk; Electronic nose; Electronic tongue; Flavor; Lipidomics; Metabolomics; Volatile compound.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chickens*
  • Eggs
  • Fatty Acids
  • Female
  • Meat
  • Multiomics*

Substances

  • Fatty Acids