Phytochemical and functional characterization of fermented Yerba mate using Rhizopus oligosporus

AMB Express. 2023 Sep 9;13(1):94. doi: 10.1186/s13568-023-01600-4.

Abstract

Solid-state fermentation (SSF) was used to enhance the bioactive compounds and biological properties of food materials, such as buckwheat, turmeric, and ginseng. This study was investigated the effects of SSF for up to 10 days using Rhizopus oligosporus on Yerba mate (Ilex paraguariensis St. Hilaire). The total phenolic content of Yerba mate rose to 20% after 1 day fermentation. The saponin contents of Yerba mate rose to 38% after 7 day fermentation. Furthermore, chlorogenic acid, caffeic acid, and caffeine levels were increased up to 27.74% by fermentation, as determined by UPLC-MS analysis. ORAC and FRAP assays showed that the antioxidant activities of Yerba mate were enhanced 1.9- and 1.14-fold after 1 day fermentation. In addition, its inhibitory activities against yeast α-glucosidase and nitric oxide release in LPS-stimulated RAW264.7 cells were higher than in the unfermented Yerba mate. Moreover, taste sensory analysis using an electronic tongue sensory system showed that the flavor of Yerba mate after 1 day fermentation was similar to that of the unfermented Yerba mate. These results suggested that solid fermentation using R. oligosporus is conducive to producing Yerba mate with enhanced biological properties.

Keywords: Antioxidant; Rhizopus oligosporus; Solid fermentation; Yerba mate; α-glucosidase.