Temperature-sensitive hydrogel dressing loaded with nicotinamide mononucleotide accelerating wound healing in diabetic mice

Biomed Pharmacother. 2023 Nov:167:115431. doi: 10.1016/j.biopha.2023.115431. Epub 2023 Sep 8.

Abstract

Diabetic foot ulcers, a common complication of diabetes mellitus, significantly impact patients' quality of life and impose a substantial economic burden on healthcare systems. However, the currently used treatments are associated with various challenges and the traditionally used dressings lack functional efficacy. Oxidative stress is believed to play a vital role in diabetic wound healing. Therefore, nicotinamide mononucleotide (NMN), which is known for its antioxidant properties, offers the potential to accelerate the wound-healing process. Here, a thermosensitive composite hydrogel was synthesized by mixing Pluronic F127 and Pluronic F68 with an antibacterial component chitosan. The hydrogel exhibited favorable properties including a stable structure, appropriate solid-liquid phase change, loose porosity, slow-release, antibacterial properties, and biocompatibility. In vitro experiments demonstrated that the NMN-loaded temperature-sensitive hydrogel effectively promoted cell proliferation, migration, and angiogenesis and exhibited antioxidant activity. In diabetic thickness skin defect models, NMN-loaded temperature-sensitive hydrogel treatment significantly accelerated wound healing by promoting collagen synthesis, angiogenesis, and increased expression of vascular endothelial growth factor and transforming growth factor- β1. In summary, NMN-loaded temperature-sensitive hydrogel can promote diabetic wound healing in a simple, economical, effective, and safe manner, with potential application in treating diabetic wounds.

Keywords: Antioxidant; Diabetic foot ulcer; Nicotinamide mononucleotide; Temperature-sensitive hydrogel; Topical wound care.