Coloration on Bluish Alginate Films with Amorphous Heterogeneity Thereof

Polymers (Basel). 2023 Sep 1;15(17):3627. doi: 10.3390/polym15173627.

Abstract

Using sodium alginate (Alg) aqueous solution containing indigo carmine (IdC) at various concentrations we characterized the rippled surface pattern with micro-spacing on a flexible film as intriguing bluish Alg-IdC iridescence. The characterization was performed using Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, atomic force microscopy, electron microscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction analysis, and photoluminescence detection. The edge pattern on the film had a maximum depth of 825 nm, a peak-to-peak distance of 63.0 nm, and an average distance of 2.34 nm. The center of the pattern had a maximum depth of 343 nm and a peak-to-peak distance of 162 nm. The pattern spacing rippled irregularly, widening toward the center and narrowing toward the edges. The rippled nano-patterned areas effectively generated iridescence. The ultraviolet absorption spectra of the mixture in the 270 and 615 nm ranges were the same for both the iridescent and non-iridescent film surfaces. By adding Ag+ ions to Alg-IdC, self-assembled microspheres were formed, and conductivity was improved. Cross-linked bluish materials were immediately formed by the addition of Ca2+ ions, and the film was prepared by controlling their concentration. This flexible film can be used in applications such as eco-friendly camouflage, anti-counterfeiting, QR code materials for imaging/sensing, and smart hybrid displays.

Keywords: alginate; hydrogel; iridescence; micro-spacing; self-assembly; structural coloration.