Innovative Polymer Composites with Natural Fillers Produced by Additive Manufacturing (3D Printing)-A Literature Review

Polymers (Basel). 2023 Aug 24;15(17):3534. doi: 10.3390/polym15173534.

Abstract

In recent years, plastics recycling has become one of the leading environmental and waste management issues. Along with the main advantage of plastics, which is undoubtedly their long life, the problem of managing their waste has arisen. Recycling is recognised as the preferred option for waste management, with the aim of reusing them to create new products using 3D printing. Additive manufacturing (AM) is an emerging and evolving rapid tooling technology. With 3D printing, it is possible to achieve lightweight structures with high dimensional accuracy and reduce manufacturing costs for non-standard geometries. Currently, 3D printing research is moving towards the production of materials not only of pure polymers but also their composites. Bioplastics, especially those that are biodegradable and compostable, have emerged as an alternative for human development. This article provides a brief overview of the possibilities of using thermoplastic waste materials through the application of 3D printing, creating innovative materials from recycled and naturally derived materials, i.e., biomass (natural reinforcing fibres) in 3D printing. The materials produced from them are ecological, widely available and cost-effective. Research activities related to the production of bio-based materials have gradually increased over the last two decades, with the aim of reducing environmental problems. This article summarises the efforts made by researchers to discover new innovative materials for 3D printing.

Keywords: 3D printing; TPS; biocomposites; biofibres; biomass; natural fillers.

Publication types

  • Review