Dynamic Electromagnetic Scattering Simulation of Tilt-Rotor Aircraft in Multiple Modes

Sensors (Basel). 2023 Sep 1;23(17):7606. doi: 10.3390/s23177606.

Abstract

To study the electromagnetic scattering of tilt-rotor aircraft during multi-mode continuous flight, a dynamic simulation approach is presented. A time-varying mesh method is established to characterize the dynamic rotation and tilting of tilt-rotor aircraft. Shooting and bouncing rays and the uniform theory of diffraction are used to calculate the multi-mode radar cross-section (RCS). And the scattering mechanisms of tilt-rotor aircraft are investigated by extracting the micro-Doppler and inverse synthetic aperture radar images. The results show that the dynamic RCS of tilt-rotor aircraft in helicopter and airplane mode exhibits obvious periodicity, and the transition mode leads to a strong specular reflection on the rotor's upper surface, which increases the RCS with a maximum increase of about 36 dB. The maximum micro-Doppler shift has functional relationships with flight time, tilt speed, and wave incident direction. By analyzing the change patterns of maximum shift, the real-time flight state and mode can be identified. There are some significant scattering sources on the body of tilt-rotor aircraft that are distributed in a planar or point-like manner, and the importance of different scattering sources varies in different flight modes. The pre-studies on the key scattering areas can provide effective help for the stealth design of the target.

Keywords: dynamic electromagnetic scattering; micro-Doppler; multiple modes; radar cross section; tilt-rotor aircraft; time-varying mesh method.