FPattNet: A Multi-Scale Feature Fusion Network with Occlusion Awareness for Depth Estimation of Light Field Images

Sensors (Basel). 2023 Aug 28;23(17):7480. doi: 10.3390/s23177480.

Abstract

A light field camera can capture light information from various directions within a scene, allowing for the reconstruction of the scene. The light field image inherently contains the depth information of the scene, and depth estimations of light field images have become a popular research topic. This paper proposes a depth estimation network of light field images with occlusion awareness. Since light field images contain many views from different viewpoints, identifying the combinations that contribute the most to the depth estimation of the center view is critical to improving the depth estimation accuracy. Current methods typically rely on a fixed set of views, such as vertical, horizontal, and diagonal, which may not be optimal for all scenes. To address this limitation, we propose a novel approach that considers all available views during depth estimation while leveraging an attention mechanism to assign weights to each view dynamically. By inputting all views into the network and employing the attention mechanism, we enable the model to adaptively determine the most informative views for each scene, thus achieving more accurate depth estimation. Furthermore, we introduce a multi-scale feature fusion strategy that amalgamates contextual information and expands the receptive field to enhance the network's performance in handling challenging scenarios, such as textureless and occluded regions.

Keywords: deep learning; depth estimation; light field; occlusion handling.