Configurable Encryption and Decryption Architectures for CKKS-Based Homomorphic Encryption

Sensors (Basel). 2023 Aug 24;23(17):7389. doi: 10.3390/s23177389.

Abstract

With the increasing number of edge devices connecting to the cloud for storage and analysis, concerns about security and data privacy have become more prominent. Homomorphic encryption (HE) provides a promising solution by not only preserving data privacy but also enabling meaningful computations on encrypted data; while considerable efforts have been devoted to accelerating expensive homomorphic evaluation in the cloud, little attention has been paid to optimizing encryption and decryption (ENC-DEC) operations on the edge. In this paper, we propose efficient hardware architectures for CKKS-based ENC-DEC accelerators to facilitate computations on the client side. The proposed architectures are configurable to support a wide range of polynomial sizes with multiplicative depths (up to 30 levels) at a 128-bit security guarantee. We evaluate the hardware designs on the Xilinx XCU250 FPGA platform and achieve an average encryption time 23.7× faster than that of the well-known SEAL HE library. By reducing time complexity and improving the hardware utilization of cryptographic algorithms, our configurable CKKS-supported ENC-DEC hardware designs have the potential to greatly accelerate cryptographic processes on the client side in the post-quantum era.

Keywords: Cheon-Kim-Kim-Song (CKKS); hardware architecture; homomorphic encryption (HE); number theoretic transform (NTT); ring learning with errors (RLWE).