A Survey on Unmanned Underwater Vehicles: Challenges, Enabling Technologies, and Future Research Directions

Sensors (Basel). 2023 Aug 22;23(17):7321. doi: 10.3390/s23177321.

Abstract

Unmanned underwater vehicles (UUVs) are becoming increasingly important for a variety of applications, including ocean exploration, mine detection, and military surveillance. This paper aims to provide a comprehensive examination of the technologies that enable the operation of UUVs. We begin by introducing various types of unmanned vehicles capable of functioning in diverse environments. Subsequently, we delve into the underlying technologies necessary for unmanned vehicles operating in underwater environments. These technologies encompass communication, propulsion, dive systems, control systems, sensing, localization, energy resources, and supply. We also address general technical approaches and research contributions within this domain. Furthermore, we present a comprehensive overview of related work, survey methodologies employed, research inquiries, statistical trends, relevant keywords, and supporting articles that substantiate both broad and specific assertions. Expanding on this, we provide a detailed and coherent explanation of the operational framework of UUVs and their corresponding supporting technologies, with an emphasis on technical descriptions. We then evaluate the existing gaps in the performance of supporting technologies and explore the recent challenges associated with implementing the Thorp model for the distribution of shared resources, specifically in communication and energy domains. We also address the joint design of operations involving unmanned surface vehicles (USVs), unmanned aerial vehicles (UAVs), and UUVs, which necessitate collaborative research endeavors to accomplish mission objectives. This analysis highlights the need for future research efforts in these areas. Finally, we outline several critical research questions that warrant exploration in future studies.

Keywords: USV–UAV–UUV joint-design operation; energy resources and supply; localization; propulsion and dive system; sensing; thorp model; unmanned underwater vehicle.