Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L

Materials (Basel). 2023 Aug 30;16(17):5933. doi: 10.3390/ma16175933.

Abstract

Additive manufacturing (AM) of stainless steel is more difficult than other metallic materials, as the major alloying elements of the stainless steel are prone to oxidation during the fabrication process. In the current work, specimens of the stainless steel 316L were made by the powder laser bed fusion (P-LBF) additive manufacturing process. These specimens were investigated by electron microscopy and micro-/nano-indentation techniques to investigate the microstructural aspects and the mechanical properties, respectively. Compositionally, a similar wrought stainless steel was subjected to identical investigation, and used as a benchmark material. The microstructure of the P-LBF-processed alloy shows both equiaxed and elongated grains, which are marginally smaller (3.2-3.4 μm) than that of the wrought counterpart (3.6 μm). Withstanding such marginal gain size refinement, the increase in shear stress and hardness of the L-PBF alloy was striking. The L-PBF-processed alloy possess about 1.92-2.12 GPa of hardness, which was about 1.5 times higher than that of wrought alloy (1.30 GPa), and about 1.15 times more resistant against plastic flow of material. Similarly, L-PBF-processed alloy possess higher maximum shear stress (274.5-294.4 MPa) than that of the wrought alloy (175.9 MPa).

Keywords: additive manufacturing; hardness; laser powder bed fusion; microstructure; stainless steel 316L.

Grants and funding

This research received no external funding.