The Aqueous Extract of Brassica oleracea L. Exerts Phytotoxicity by Modulating H2O2 and O2- Levels, Antioxidant Enzyme Activity and Phytohormone Levels

Plants (Basel). 2023 Aug 28;12(17):3086. doi: 10.3390/plants12173086.

Abstract

Allelopathic interactions between plants serve as powerful tools for weed control. Despite the increasing understanding of the allelopathic mechanisms between different plant species, the inhibitory effects of B. oleracea on weed growth remain poorly understood. In this study, we conducted experiments to demonstrate that B. oleracea extract can suppress the germination of Panicum miliaceum L.varruderale Kit. seeds as well as of the roots, shoots and hypocotyl elongation of P. miliaceum seedlings. Furthermore, we observed that B. oleracea extract reduced the levels of hydrogen peroxide and superoxide anion in the roots while increasing the activities of catalase and ascorbate peroxidase. In the shoots, B. oleracea extract enhanced the activities of superoxide dismutase and peroxidase. Moreover, the use of the extract led to an increase in the content of phytohormones (indole-3-acetic acid, indole-3-acetaldehyde, methyl indole-3-acetate, N6-isoPentenyladenosine, dihydrozeatin-7-glucoside, abscisic acid and abscisic acid glucose ester) in P. miliaceum seedlings. Interestingly, the aqueous extract contained auxins and their analogs, which inhibited the germination and growth of P. miliaceum. This may contribute to the mechanism of the B. oleracea-extract-induced suppression of P. miliaceum growth.

Keywords: LC-MS; allelopathy; antioxidant enzymes; phytohormones; reactive oxygen species.