Tolerant Epitypes of Elicited Holm Oak Somatic Embryos Could Be Revealed by Challenges in Dual Culture with Phytophthora cinnamomi Rands

Plants (Basel). 2023 Aug 25;12(17):3056. doi: 10.3390/plants12173056.

Abstract

Holm oaks (Quercus ilex L.) can suffer severe infection by the oomycete Phytophthora cinnamomi Rands; the production of more tolerant plants is, therefore, required. Embryo formation is a key period in the establishment of epigenetic memory. Somatic embryos from three holm oak genotypes were elicited, either over 3 days or 60 days, with methyl-jasmonate, salicylic acid (SA), β-aminobutyric acid (BABA), or benzothiadiazole (all at 50 μM and 100 μM), or 10% and 30% of a filtered oomycete extract (FILT10 and FILT30) to activate plant immune responses. The number of embryos produced and conversion rate under all conditions were recorded. Some elicited embryos were then exposed to P. cinnamomi in dual culture, and differential mycelial growth and the progression of necrosis were measured. The same was performed with the roots of germinated embryos. Within genotypes, significant differences were seen among the elicitation treatments in terms of both variables. Embryos and roots of 60-day BABA, SA, or FILT10 treatments inhibited mycelium growth. The 3-day BABA (either concentration) and 60-day FILT10 induced the greatest inhibition of necrosis. Mycelium and necrosis inhibition were compared with those of tolerant trees. Both inhibitions might be a defense response maintained after primed embryo germination, thus increasing the likelihood of tolerance to infection.

Keywords: Quercus ilex; disease tolerance; dual culture; epigenetic memory changes; priming; somatic embryogenesis.

Grants and funding

This research was funded by MINECO, the European Regional Development Fund Project, and IMIDRA (AGL2013-47400-C4-1-R).