Fabrication and Characterization of Tantalum-Iron Composites for Photocatalytic Hydrogen Evolution

Nanomaterials (Basel). 2023 Aug 31;13(17):2464. doi: 10.3390/nano13172464.

Abstract

Photocatalytic hydrogen evolution represents a transformative avenue in addressing the challenges of fossil fuels, heralding a renewable and pristine alternative to conventional fossil fuel-driven energy paradigms. Yet, a formidable challenge is crafting a high-efficacy, stable photocatalyst that optimizes solar energy transduction and charge partitioning even under adversarial conditions. Within the scope of this investigation, tantalum-iron heterojunction composites characterized by intricate, discoidal nanostructured materials were meticulously synthesized using a solvothermal-augmented calcination protocol. The X-ray diffraction, coupled with Rietveld refinements delineated the nuanced alterations in phase constitution and structural intricacies engendered by disparate calcination thermal regimes. An exhaustive study encompassing nano-morphology, electronic band attributes, bandgap dynamics, and a rigorous appraisal of their photocatalytic prowess has been executed for the composite array. Intriguingly, the specimen denoted as 1000-1, a heterojunction composite of TaO2/Ta2O5/FeTaO4, manifested an exemplary photocatalytic hydrogen evolution capacity, registering at 51.24 µmol/g, which eclipses its counterpart, 1100-1 (Ta2O5/FeTaO4), by an impressive margin. Such revelations amplify the prospective utility of these tantalum iron matrices, endorsing their candidacy as potent agents for sustainable hydrogen production via photocatalysis.

Keywords: FeTaO4; Ta2O5/FeTaO4; photocatalyst; photocatalytic hydrogen evolution; solar hydrogen; water splitting.