Enhanced photo-Fenton-like performance of biotemplated manganese-doped cobalt silicate catalysts

J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1812-1824. doi: 10.1016/j.jcis.2023.08.188. Epub 2023 Aug 29.

Abstract

Cobalt-based catalysts are one of the preferred materials for effective activation of hydrogen peroxide, and metal element doping and active site dispersion are effective methods to enhance their catalytic activity. In this work, manganese-doped cobalt silicate@diatomite composites with enhanced photo-Fenton-like oxidation performance were prepared and used for degradation of methyl orange (MO) dyes. Experiments showed that manganese doping increased the specific surface area of the samples and decreased the band gap energy of the materials. Moreover, the samples doped with manganese elements had better photo-Fenton-like properties. The degradation of methyl orange by Co0.25MnSi@DE/H2O2-UV reached more than 95%. In addition, density-functional theory (DFT) calculations showed that the Mn-doped samples were more prone to activate H2O2 than non-manganese-doped samples, and the synergistic effect from using a bimetallic catalyst increased the photo-Fenton oxidation activity in the system. ESR spectroscopy and bursting tests indicated that the possible degradation mechanism consisted of hydroxyl radicals and superoxide radicals generated by the synergistic effect of cobalt ions and manganese under UV radiation. This study thus presents a feasible idea for the preparation of cobalt-based photo-Fenton catalysts that also provides a basis for understanding the catalytic mechanism analysis of other types of bimetallic catalysts.

Keywords: Cobalt silicate@diatomite; Degradation; Doping; Hydroxyl radicals; Photo Fenton-like.