Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments

Adv Mater. 2024 Jan;36(2):e2307290. doi: 10.1002/adma.202307290. Epub 2023 Nov 23.

Abstract

Herein, the fabrication of amphibious polymer materials with outstanding mechanical performances, both underwater and in the air is reported. A polyvinyl alcohol/poly(2-methoxyethylacrylate) (PVA/PMEA) composite with multiscale nanostructures is prepared by combining solvent exchange and thermal annealing strategies, which contributes to nanophase separation with rigid PVA-rich and soft PMEA-rich phases and high-density crystalline domains of PVA chains, respectively. Benefiting from the multiscale nanostructure, the PVA/PMEA hydrogel demonstrates excellent stability in harsh (such as acidic, alkaline, and saline) aqueous solutions, as well as superior mechanical behavior with a breaking strength of up to 34.8 MPa and toughness of up to 214.2 MJ m-3 . Dehydrating the PVA/PMEA hydrogel results in an extremely robust plastic with a breaking strength of 65.4 MPa and toughness of 430.9 MJ m-3 . This study provides a promising phase-structure engineering route for constructing high-performance polymer materials for complex load-bearing environments.

Keywords: amphibious; annealing; polyvinyl alcohol; solvent exchange; tough hydrogel.