Observation of Electronic Strong Correlation in VTe_{2}-2sqrt[3]×2sqrt[3] Monolayer

Phys Rev Lett. 2023 Aug 25;131(8):086501. doi: 10.1103/PhysRevLett.131.086501.

Abstract

Strong electron correlation under two-dimensional limit is intensely studied in the transition metal dichalcogenides monolayers, mostly within their charge density wave (CDW) states that host a star of David period. Here, by using scanning tunneling microscopy and spectroscopy and density functional theory calculations with on-site Hubbard corrections, we study the VTe_{2} monolayer with a different 2sqrt[3]×2sqrt[3] CDW period. We find that the dimerization of neighboring Te-Te and V-V atoms occurs during the CDW transition, and that the strong correlation effect opens a Mott-like full gap at Fermi energy (E_{F}). We further demonstrate that such a Mott phenomenon is ascribed to the combination of the CDW transition and on-site Coulomb interactions. Our work provides a new platform for exploring Mott physics in 2D materials.