Thymidylate synthase promotes esophageal squamous cell carcinoma growth by relieving oxidative stress through activating nuclear factor erythroid 2-related factor 2 expression

PLoS One. 2023 Sep 8;18(9):e0290264. doi: 10.1371/journal.pone.0290264. eCollection 2023.

Abstract

Background: Thymidylate synthase (TYMS) is involved in the malignant process of multiple cancers, and has gained much attention as a cancer treatment target. However, the mechanism in carcinogenesis of esophageal squamous cell cancer (ESCC) is little reported. The present study was to clear the biological roles and carcinogenic mechanism of TYMS in ESCC, and explored the possibility to use TYMS as a tumor marker in diagnosis and a drug target for the treatment of ESCC.

Methods: Stably TYMS-overexpression cells established by lentivirus transduction were used for the analysis of cell proliferation. RNA sequencing was performed to explore the possible carcinogenic mechanisms.

Results: GEPIA databases analysis showed that TYMS expression in esophageal cancer tissues was higher than that in normal tissues. The MTT assay, colony formation assay, and nude mouse subcutaneous tumor model found that the overexpression of TYMS increased cell proliferation. Transcriptome sequencing analysis revealed that the promoted cell proliferation in TYMS-overexpression ESCC cells were mediated through activating genes expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 dependent antioxidant enzymes to relieve oxidative stress, which was confirmed by increased glutathione (GSH), glutathione peroxidase (GPX) activities, and reduced reactive oxygen species. Nrf2 active inhibitors (ML385) used in TYMS-overexpression cells inhibited the expression of Nrf2-dependent antioxidant enzyme genes, thereby increasing oxidative stress and blocking cell proliferation.

Conclusion: Our study indicated a novel and effective regulatory capacity of TYMS in the cell proliferation of ESCC by relieving oxidative stress through activating expression of Nrf2 and Nrf2-dependent antioxidant enzymes genes. These properties make TYMS and Nrf2 as appealing targets for ESCC clinical chemotherapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants
  • Esophageal Neoplasms* / genetics
  • Esophageal Squamous Cell Carcinoma* / genetics
  • Mice
  • NF-E2-Related Factor 2 / genetics
  • Oxidative Stress
  • Thymidylate Synthase / genetics

Substances

  • Antioxidants
  • Thymidylate Synthase
  • NF-E2-Related Factor 2

Grants and funding

This research was supported by the National Natural Science Foundation of China (82103175), Natural Science Foundation of Shanxi Province (20210302123316).