Future projections of worst floods and dam break analysis in Mahanadi River Basin under CMIP6 climate change scenarios

Environ Monit Assess. 2023 Sep 8;195(10):1173. doi: 10.1007/s10661-023-11797-3.

Abstract

This study provides a comprehensive analysis of the hydrological effects and flood risks of the Hirakud Reservoir, considering different CMIP6 climate change scenarios. Using the HEC-HMS and HEC-RAS models, the study evaluates future flow patterns and the potential repercussions of dam breaches. The following summary of the work: firstly, the HEC-HMS model is calibrated and validated using daily stage-discharge observations from the Basantpur station. With coefficient of determination (R2) values of 0.764 and 0.858 for calibration and validation, respectively, the model demonstrates satisfactory performance. Secondly, The HEC-HMS model predicts future flow for the Hirakud Reservoir under three climate change scenarios (SSP2-4.5, SSP3-7.0 and SSP5-8.5) and for three future periods (near future, mid future and far future). Thirdly, by analyzing time-series hydrographs, the study identifies peak flooding events. In addition, the HEC-RAS model is used to assess the effects of dam breaches. Downstream of the Hirakud Dam, the analysis highlights potential inundation areas and depth variations. The study determines the following inundation areas for the worst flood scenarios: 3651.52 km2, 2931.46 km2 and 4207.6 km2 for the near-future, mid-future and far-future periods, respectively. In addition, the utmost flood depths for these scenarios are determined to be 31 m, 29 m and 39 m for the respective future periods. The study area identifies 105 vulnerable villages and several towns. This study emphasizes the importance of contemplating climate change scenarios and implementing proactive measures to mitigate the peak flooding events in the Hirakud reservoir region.

Keywords: Climate change adaption; Disaster management; Flood inundation; HEC-HMS; HEC-RAS; Hirakud Reservoir.

MeSH terms

  • Calibration
  • Climate Change*
  • Environmental Monitoring
  • Floods*
  • Hydrology