Modulating shape transition in surfactant stabilized reverse microemulsions

Soft Matter. 2023 Sep 20;19(36):7033-7045. doi: 10.1039/d3sm00682d.

Abstract

The formation of reverse microemulsions (RMs) of spherical shape in the oil/water/surfactant ternary mixture at high molar ratio of water to surfactant (ω) is well established. Using dynamic light scattering, small-angle X-ray and neutron scattering, we elucidate the formation of non-spherical reverse microemulsions stabilised by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at ω = 10 and volume fractions of the dispersed phase, Φ, ranging from 0.005 to 0.20. In addition, we propose a strategy to tune the aspect ratio of non-spherical droplets and colloidal interactions by (i) varying the volume fraction of the dispersed phase (ii) changing the temperature, and (iii) by substituting the aliphatic oil with a mixture of aliphatic and aromatic hydrocarbons. This tunability of anisotropy along with a precise control of the interactions in the RMs, their ability to form spontaneously and their thermodynamic stability is crucial to provide a handle on reaction kinetics, synthesis of anisotropic nanoparticles as well as for their application as lubricants and viscosity modifiers.