Cell surface profiling of cultured cells by direct hydrazide capture of oxidized glycoproteins

MethodsX. 2023 Aug 26:11:102349. doi: 10.1016/j.mex.2023.102349. eCollection 2023 Dec.

Abstract

Glycoproteins are a particularly interesting subset of the cellular proteome as a high proportion of proteins present on the extracellular cell surface are glycosylated. These cell surface proteins are ideal targets for biologic drug therapies or for diagnostics tests. Here, we describe a modification of the well-described Cell Surface Capture (CSC) method for the selective isolation and identification of cell surface glycoproteins that contain N-linked carbohydrates. This modification, which we refer to as Direct Cell Surface Capture (D-CSC), is based on oxidation of cell surface glycans on intact cells, followed by direct conjugation of the oxidized oligosaccharides to a solid support using hydrazide chemistry, with no biotinylation step. As a proof-of-principle, we applied D-CSC to the analysis of cell surface membrane proteins of three adherent cancer cell lines (A549, OVCAR3, and U87MG) and compared our results to those published using the well-established Cell Surface Capture (CSC) method, demonstrating comparable selectivity for cell surface proteins. •A method enabling the identification of cell surface proteins from cells in culture is described.•Application of this method to profile the cell surface on three different cancer cell lines is included.

Keywords: Cell membrane proteins; Direct Cell Surface Capture (D-CSC); Glycoproteomics; Mass spectrometry; Surfaceome.