Optimal control analysis of malware propagation in cloud environments

Math Biosci Eng. 2023 Jul 4;20(8):14502-14517. doi: 10.3934/mbe.2023649.

Abstract

Cloud computing has become a widespread technology that delivers a broad range of services across various industries globally. One of the crucial features of cloud infrastructure is virtual machine (VM) migration, which plays a pivotal role in resource allocation flexibility and reducing energy consumption, but it also provides convenience for the fast propagation of malware. To tackle the challenge of curtailing the proliferation of malware in the cloud, this paper proposes an effective strategy based on optimal dynamic immunization using a controlled dynamical model. The objective of the research is to identify the most efficient way of dynamically immunizing the cloud to minimize the spread of malware. To achieve this, we define the control strategy and loss and give the corresponding optimal control problem. The optimal control analysis of the controlled dynamical model is examined theoretically and experimentally. Finally, the theoretical and experimental results both demonstrate that the optimal strategy can minimize the incidence of infections at a reasonable loss.

Keywords: cloud environment; malware; optimal control; propagation model; virtual machine.