Tailored hybrid microbial water disinfection system using sequentially assembled microbial fuel cells and an ultraviolet C light-emitting diode

Water Res. 2023 Oct 1:244:120482. doi: 10.1016/j.watres.2023.120482. Epub 2023 Aug 12.

Abstract

An integrated ultraviolet C light-emitting diode (UV-C LED) water disinfection system activated by microbial fuel cells (MFCs) was developed, and optimized via electric circuit and device voltage profiling. The intensity of the renewable energy operated, self-powered UV-C LED for E. coli inactivation was calculated by bio-dosimetry to be 2.4 × 10-2 μW cm-2 using fluence-based rate constant (k) of ∼1.03 (±0.11) cm2/mJ to obtain the reduction equivalent fluence kinetics value. Finally, the first-order rate constant for E. coli inactivation during the tailored hybrid disinfection system was found to be 0.53 (±0.1) cm2/mJ by multiplying intensity with 1.09 (±0.1) × 10-5 s-1 derived from the linear regression of E. coli inactivation as a function of time. Furthermore, selected model microbial consisting of two bacteria (Salmonella sp. and Listeria sp.) and three viruses (MS2 bacteriophage, influenza A virus, and murine norovirus-1) were treated with UV-C LED irradiation under controlled experimental conditions to validate the disinfection efficiency of the system. Consequently, the required to achieve significant removal (i.e., >3-log; 99.9%) UV fluence and dose time were calculated to be 4-7 cm2/mJ and 54-76 h and 33-53 cm2/mJ and 400-622 h for model bacterial and viral, respectively. This study expands the applicability of microbial electrochemical system (MES) for microbial disinfection and could be utilized in future MFCs implementation studies for predicting and measuring the kinetics of microbial elimination using a tailored hybrid water treatment system.

Keywords: Disinfection; E. coli; Microbial fuel cells; UV-C LED; Virus; Wastewater.

MeSH terms

  • Animals
  • Bioelectric Energy Sources*
  • Disinfection
  • Electricity
  • Escherichia coli
  • Kinetics
  • Mice