Effects of microfiber and bead microplastic exposure in the goldfish Carassius auratus: Bioaccumulation, antioxidant responses, and cell damage

Aquat Toxicol. 2023 Oct:263:106684. doi: 10.1016/j.aquatox.2023.106684. Epub 2023 Sep 4.

Abstract

We confirmed antioxidant-related gene expression, bioaccumulation, and cell damage following exposure to various microplastics in vivo and in vitro in the goldfish Carassius auratus. Exposure of C. auratus to a 500 µm fiber-type microplastic environment (MF; 10 and 100 fibers/L) and two sizes (0.2 and 1.0 µm) of beads (MB; 10 and 100 beads/L) for 120 h increased superoxide dismutase (SOD) mRNA expression in the liver until 24 h followed by a decrease. Whereas, catalase (CAT) mRNA expression increased from 12 h to the end of the in vivo experiment. In vitro experiments were conducted with diluted microfibers (1 and 5 fibers/L) and microbeads (1 and 5 beads/L) using cultured liver cells. The results of SOD and CAT mRNA expression analysis conducted in vitro showed a tendency similar to those of experiments conducted in vivo. The H2O2 level increased in the high-concentration experimental groups compared with that in the low-concentration groups of 0.2-µm beads. In addition, the H2O2 level increased in both MF and MB groups from 12 h of exposure. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in plasma were used as indicators of liver damage in fish. The ALT and AST levels increased up to 120 h after exposure. Caspase-3 (casp-3) mRNA expression was higher in the MB group than in the MF group. We visually confirmed liver casp-3 mRNA signals using in situ hybridization. The degree of DNA damage in the MF and MB high-concentration groups increased with the exposure time. The tail length and percent of DNA in the tail of the MB group were significantly higher than those of the MF group, confirming that DNA damage was greater in the MB group. Both fiber- and bead-type microplastics induced oxidative stress in C. auratus, but the bead-type induced greater stress than the fiber-type.

Keywords: Antioxidant activity; Carassius auratus; DNA damage; Microbeads; Microplastics; Oxidative stress.

MeSH terms

  • Animals
  • Antioxidants* / metabolism
  • Bioaccumulation
  • Catalase / metabolism
  • Goldfish / genetics
  • Goldfish / metabolism
  • Hydrogen Peroxide / metabolism
  • Liver / metabolism
  • Microplastics / metabolism
  • Microplastics / toxicity
  • Oxidative Stress
  • Plastics
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism
  • Water Pollutants, Chemical* / toxicity

Substances

  • Antioxidants
  • Microplastics
  • Plastics
  • Hydrogen Peroxide
  • Water Pollutants, Chemical
  • Catalase
  • Superoxide Dismutase
  • RNA, Messenger